Regional carbon fluxes from an observationally constrained dynamic ecosystem model: Impacts of disturbance, CO2 fertilization, and heterogeneous land cover

نویسندگان

  • Ankur R. Desai
  • Paul R. Moorcroft
  • Paul V. Bolstad
  • Kenneth J. Davis
چکیده

[1] The Ecosystem Demography (ED) model was parameterized with ecological, forest inventory, and historical land use observations in an intensively managed, wetland-rich forested landscape in the upper midwest United States. Model results were evaluated against a regional network of eddy covariance flux towers and analyzed about the roles of disturbance, forest management, and CO2 fertilization. The model captured modern regional vegetation structure with worst comparison in wetlands. Model net ecosystem exchange of CO2 (NEE) was highly correlated on monthly (r 2 = 0.65) and annual (r = 0.53) timescales to 7 years of NEE observed at a 396-m-tall eddy covariance (EC) tower and to 2 years of growing season NEE from 13 regional stand-scale EC sites of varying cover and age (r = 0.64). Model summer NEE had higher than observed net uptake for the tall tower and mature hardwood sites, and correlation to growing season ecosystem respiration at these sites was poor (r = 0.09). Exclusion of forestry led to overestimation of aboveground living plant biomass accumulation by 109% between two forest inventory cycles (1996–2004). On the long-term (200 years), forestry significantly altered ecosystem cover and age, and increased NEE by 32%. CO2 fertilization over that time period increased NEE by 93% owing to a doubling of plant density. While the model showed that harvest and afforestation had smaller impacts on NEE than CO2 increase, the former were still significant and require consideration when making future NEE predictions or scaling plot-level data to regional and global flux estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink

Atmospheric measurements and land-based inventories imply that terrestrial ecosystems in the northern hemisphere are taking up significant amounts of anthropogenic carbon dioxide (CO2) emissions; however, there is considerable disagreement about the causes of this uptake, and its expected future trajectory. In this paper, we use the ecosystem demography (ED) model to quantify the contributions ...

متن کامل

The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink

Atmospheric measurements and land-based inventories imply that terrestrial ecosystems in the northern hemisphere are taking up significant amounts of anthropogenic carbon dioxide (CO2) emissions; however, there is considerable disagreement about the causes of this uptake, and its expected future trajectory. In this paper, we use the ecosystem demography (ED) model to quantify the contributions ...

متن کامل

Impacts of urbanization on land–atmosphere carbon exchange within a metropolitan area in the USA

Urbanization can cause changes in carbon fluxes, which, in turn, impacts atmospheric carbon dioxide (CO2) concentrations and possibly global surface temperatures. Using the Atlanta, Georgia, region as a case study, this paper explores the impact of urban expansion from 1973 to 2002 on land–atmosphere carbon exchange. The major objectives were to estimate net ecosystem production (NEP) values fo...

متن کامل

Terrestrial Ecosystem Carbon Fluxes Predicted from MODIS Satellite Data and Large-Scale Disturbance Modeling

The CASA (Carnegie-Ames-Stanford) ecosystem model based on satellite greenness observations has been used to estimate monthly carbon fluxes in terrestrial ecosystems from 2000 to 2009. The CASA model was driven by NASA Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation cover properties and large-scale (1-km resolution) disturbance events detected in biweekly time series data. This...

متن کامل

Impact of land cover uncertainties on estimates of biospheric carbon fluxes

[1] Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Typ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007